LaplaceSurvivor¶
Survivor functions $^{A}R(s)$ in Laplace space.
It is practical to have it defined on its own.
Public FunctionsLaplaceSurvivor(QMatrix const & _qmatrix)Constructor.
- Parameters
- _qmatrix -
The transition state matrix for which to compute \(^eG_{AF}(t\rightarrow\infty)\)
LaplaceSurvivor(LaplaceSurvivor const & _c)Copy constructor.
Computes \(sI - Q_{AA} - Q_{AF}\ \int_0^\tau e^{-st}e^{Q_{FF}t}\partial\,t\ Q_{FA}\)
- Parameters
- _s -
Value of the laplacian scale
- _tau -
Maximum length of missed events
Computes the determinant \(\mathrm{det}(sI - H(s))\)
- Parameters
- _s -
Value of the laplacian scale
- _tau -
Maximum length of missed events
Computes the matrix \(W=\mathrm{det}(sI - H(s, \tau))\)
- Parameters
- _s -
Value of the laplacian scale
- _tau -
Maximum length of missed events
Derivative along of W along s
- Parameters
- _s -
Value of the laplacian scale
- _tau -
Maximum length of missed events
QMatrix const & get_qmatrix()Returns the Q matrix.
This is strictly a read-only function since changing the matrix has fairly far ranging implications.
t_uint get_nopen()Get expected number of open-states.
LaplaceSurvivor transpose()Returns \(^{F}R(s)\).
t_cvector get_ff_eigenvalues()Returns eigenvalues of ff block.