Exact Survivor Function \(R_A(t)\)¶
The exact survivor function is defined as:
with,
where the matrices \(C_{imr}\) are defined as a recursion:
The initial values are \(C_{i00} = A_{iAA}\), with \(A_i\) the spectral decomposition of the \(\mathcal{Q}\)-matrix, and \(\lambda_i\) are its eigenvalues. Finally, the matrices \(D_i\) are defined as:
Note
This recursion is implemented in the header likelihood/recursion.h
in such a way that it can act
upon a variety of objects. This makes testing it somewhat easier, since we can defined the
\(D_i\), for instance, as scalars rather than matrices.
The survivor function can be initialized from a \(\mathcal{Q}\)-matrix and the resolution \(\tau\):
python: | from dcprogs.likelihood import QMatrix, ExactSurvivor
# Define parameters.
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
[2./3., -1502./3., 0, 500, 0],
[ 15, 0, -2065, 50, 2000],
[ 0, 15000, 4000, -19000, 0],
[ 0, 0, 10, 0, -10] ], 2)
tau = 1e-4
survivor = ExactSurvivor(qmatrix, 1e-4);
print(survivor)
|
---|---|
c++11: | #include <iostream>
#include <likelihood/exact_survivor.h>
#include <likelihood/errors.h>
int main() {
// Define parameters.
DCProgs::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
DCProgs::ExactSurvivor survivor(qmatrix, 1e-4);
std::cout << survivor << std::endl;
<< DCProgs::numpy_io(survivor.recursion_af(i, m, l), " ") << "\n\n";
return 0;
}
|
The open and shut time survivor likelihood can be computed using a single call:
python: | The python bindings accept both scalars and array inputs. print("AF values\n" \
"---------\n\n")
times = [1e-4, 1e-5, 2.0e-5, 2.5e-5]
af_values = survivor.af(times)
for t, v in zip(times, af_values): print(" * at time t={0}:\n{1}\n".format(t, v))
|
---|---|
c++11: | std::cout << "AF values\n"
"---------\n\n";
std::cout << " * at time t=" << 1e-4 <<":\n "
<< DCProgs::numpy_io(survivor.af(1e-4), " ") << "\n"
<< " * at time t=" << 1.5e-4 <<":\n "
<< DCProgs::numpy_io(survivor.af(1.5e-4), " ") << "\n"
<< " * at time t=" << 2.0e-4 <<":\n "
<< DCProgs::numpy_io(survivor.af(2.0e-4), " ") << "\n"
<< " * at time t=" << 2.5e-4 <<":\n "
|
The details of the recursions, i.e. the \(C_{iml}\) matrices, can be accessed directly as shown below.
python: | print("AF recusion matrices\n" \
"--------------------\n\n")
for i in range(5):
for m in range(1, 3):
for l in range(0, m+1):
print( " * C_{{{0}{1}{2}}}:\n{3}\n" \
.format(i, m, l, survivor.recursion_af(i, m, l)) )
|
---|---|
c++11: | std::cout << "AF recusion matrices\n"
"--------------------\n\n";
for(DCProgs::t_uint i(0); i < 5; ++i)
for(DCProgs::t_uint m(1); m < 3; ++m)
for(DCProgs::t_uint l(0); l <= m; ++l)
std::cout << " * C_{" << i << m << l << "}:\n "
|