CKF Model¶
The following tries to reproduce Fig 9 from Hawkes, Jalali, Colquhoun (1992). First we create the \(Q\)-matrix for this particular model.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from dcprogs.likelihood import QMatrix
tau = 0.2
qmatrix = QMatrix([[-1, 1, 0], [19, -29, 10], [0, 0.026, -0.026]], 1)
We then create a function to plot each exponential component in the asymptotic expression. An explanation on how to get to these plots can be found in the CH82 notebook.
from dcprogs.likelihood._methods import exponential_pdfs
def plot_exponentials(qmatrix, tau, x0=None, x=None, ax=None, nmax=2, shut=False):
from dcprogs.likelihood import missed_events_pdf
from dcprogs.likelihood._methods import exponential_pdfs
if ax is None:
fig,ax = plt.subplots(1, 1)
if x is None: x = np.arange(0, 5*tau, tau/10)
if x0 is None: x0 = x
pdf = missed_events_pdf(qmatrix, tau, nmax=nmax, shut=shut)
graphb = [x0, pdf(x0+tau), '-k']
functions = exponential_pdfs(qmatrix, tau, shut=shut)
plots = ['.r', '.b', '.g']
together = None
for f, p in zip(functions[::-1], plots):
if together is None: together = f(x+tau)
else: together = together + f(x+tau)
graphb.extend([x, together, p])
ax.plot(*graphb)
For practical reasons, we plot the excess shut-time probability densities in the graph below. In all other particulars, it should reproduce Fig. 9 from Hawkes, Jalali, Colquhoun (1992)
from dcprogs.likelihood import missed_events_pdf
fig,ax = plt.subplots(2, 2, figsize=(12, 10 ))
#ax = fig.add_subplot(2, 2, 1)
x = np.arange(0, 10, tau/100)
pdf = missed_events_pdf(qmatrix, 0.2, nmax=2, shut=True)
ax[0, 0].plot(x, pdf(x), '-k')
ax[0, 0].set_xlabel('time $t$ (ms)')
ax[0, 0].set_ylabel('Shut-time probability density $f_{\\bar{\\tau}=0.2}(t)$')
tau = 0.2
x, x0 = np.arange(0, 3*tau, tau/10.0), np.arange(0, 3*tau, tau/100)
plot_exponentials(qmatrix, tau, shut=True, ax=ax[0, 1], x=x, x0=x0)
ax[0, 1].set_ylabel('Excess shut-time probability density $f_{{\\bar{{\\tau}}={tau}}}(t)$'.format(tau=tau))
ax[0, 1].set_xlabel('time $t$ (ms)')
ax[0, 1].yaxis.tick_right()
ax[0, 1].yaxis.set_label_position("right")
tau = 0.05
x, x0 = np.arange(0, 3*tau, tau/10.0), np.arange(0, 3*tau, tau/100)
plot_exponentials(qmatrix, tau, shut=True, ax=ax[1, 0], x=x, x0=x0)
ax[1, 0].set_ylabel('Excess shut-time probability density $f_{{\\bar{{\\tau}}={tau}}}(t)$'.format(tau=tau))
ax[1, 0].set_xlabel('time $t$ (ms)')
tau = 0.5
x, x0 = np.arange(0, 3*tau, tau/10.0), np.arange(0, 3*tau, tau/100)
plot_exponentials(qmatrix, tau, shut=True, ax=ax[1, 1], x=x, x0=x0)
ax[1, 1].set_ylabel('Excess shut-time probability density $f_{{\\bar{{\\tau}}={tau}}}(t)$'.format(tau=tau))
ax[1, 1].set_xlabel('time $t$ (ms)')
ax[1, 1].yaxis.tick_right()
ax[1, 1].yaxis.set_label_position("right")
fig.tight_layout()